Representation of uniform B-spline curve by Eulerian numbers

نویسنده

  • E. Santoro
چکیده

Investigating the Eulerian numbers and uniform B-spline recurrence relations, a connection between Eulerian numbers and B-spline values at knot points is proved, and a relation to inner products of uniform B-splines is shown. This connection allows, with few operations, to evaluate the B-spline curve at domain knots and could be utilized to obtain an easy approximation and representation of B-spline curves.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1 9 Se p 20 08 A spline interpretation of Eulerian numbers ∗

Abstract In this paper, we explore the interrelationship between Eulerian numbers and B splines. Specifically, using B splines, we give the explicit formulas of the refined Eulerian numbers, and descents polynomials. Moreover, we prove that the coefficients of descent polynomials D d (t) are logconcave. This paper also provides a new approach to study Eulerian numbers and descent polynomials.

متن کامل

Se p 20 08 A spline interpretation of Eulerian numbers ∗

Abstract In this paper, we explore the interrelationship between Eulerian numbers and B splines. Specifically, using B splines, we give the explicit formulas of the refined Eulerian numbers, and descents polynomials. Moreover, we prove that the coefficients of descent polynomials D d (t) are logconcave. This paper also provides a new approach to study Eulerian numbers and descent polynomials.

متن کامل

Eulerian polynomials and B-splines

Here presented is the interrelationship between Eulerian polynomials, Eulerian fractions and Euler-Frobenius polynomials, Euler-Frobenius fractions, Bsplines, respectively. The properties of Eulerian polynomials and Eulerian fractions and their applications in B-spline interpolation and evaluation of Riemann zeta function values at odd integers are given. The relation between Eulerian numbers a...

متن کامل

Euler–frobenius Numbers and Rounding

We study the Euler–Frobenius numbers, a generalization of the Eulerian numbers, and the probability distribution obtained by normalizing them. This distribution can be obtained by rounding a sum of independent uniform random variables; this is more or less implicit in various results and we try to explain this and various connections to other areas of mathematics, such as spline theory. The mea...

متن کامل

A general matrix representation for non-uniform B-spline subdivision with boundary control

Boundary conditions are still an open question in the field of approximating subdivision since the problem of determining a general construction of the endpoint rules we need when subdividing a B-spline curve/surface with Bézier end conditions has not been solved yet. This consideration prompted us to present an efficient algorithm for the conversion between B-spline bases defined over differen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004